
JOURNAL OF COMPUTATIONAL PHYSICS 10, 534-553 (1972) 

Solution of the Transport Integral Equation 

with Anisotropic Scattering 

H. HEMBD 

European Community, CCR, Ispra Establishment, Ispra (Varese), Italy 

AND 

H. KSCHWENDT 

European Community, CID, Centre de Calcul, Kirchberg, Luxembourg 

Received February 8, 1972 

The paper deals with the solution of the integral equation for particle transport in 
homogeneous material systems having plane and spherical symmetry. Emphasis is put 
on the explicit inclusion of anisotropic scattering (higher Legendre components of the 
scattering kernel). The present approach is based on a generalization of the Integral 
Transform method. The solution is represented as an expansion with respect to analytical 
basis functions with coefficients satisfying a certain linear system. The determination 
of this linear system and its matrix elements in a form convenient for numerical purposes 
is the central point of the paper. 

For the computation of the matrix elements a computer program has been developed. 
It calculates the elements in the case of isotropic and linear anisotropic scattering in 
systems of plane and spherical symmetry as a function of the optical thickness of the 
system. Higher anisotropy is easily included. Numerical examples indicate the great 
practical importance of the method, due to the fact that the computational effort involved 
is very low, especially for small systems. 

INTRODUCTION 

Transport integral equations are linearized versions of the Boltzmann equation 
and occur in many branches of physics to describe the interaction of particles or 
quasiparticles with matter. Important examples are neutron transport in a reactor, 
radiative transfer, rarefied gas dynamics or migration of point defects in crystals. 
The first approaches to solve the transport equation had been done in the domain 
of radiative transfer and summarized in the standard textbooks of Chandrasekhar 
[4] or Kourganoff and Busbridge [5]. 
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In the present paper we focus on the solution of the integral equation for neutron 
transport [l] due to anisotropic scattering of monoenergetic neutrons in material 
systems having plane or spherical symmetry. The tool to solve this integral equation 
is the Integral Transform or IT method, an analytical approach developed in the 
last years [lo]. As compared to purely numerical methods like S, [12] or Monte 
Carlo [13] it has the advantage that the influence of the parameters of the problem 
can be studied explicitly; moreover it serves as a standard for testing numerical 
approximations. 

Other analytical methods to solve the neutron transport equation are the widely 
used normal mode approach of Case [14] and the Fourier transform method of 
Kiesewetter [15]. In both cases the problem generally reduces to the solution of a 
Fredholm type integral equation to be performed numerically. If anisotropic 
scattering has to be taken into account, this integral equation is replaced by a 
system of integral equations of a rather complex structure [16]. The main difference 
between these and our IT method lies in the opposite convergence behavior of the 
solutions. Whereas the methods mentioned converge the faster the larger (compared 
to a characteristic mean free path) the system is, our method is the faster the 
smaller the system is. 

As has been shown elsewhere [ 171, in the simplest case of isotropic scattering the 
transport equations for plane and spherical symmetry can simultaneously be 
reduced to the same integral equation of displacement type with the kernel 
E,(lx - ~‘1). (E,(z) denotes the exponential integral, x and x’ the distance of the 
reference point and scattering point from the symmetry plane of the slab or from 
the center of the sphere). In the case of anisotropic scattering the transport integral 
equation is much more complicated since every anisotropic component of the 
physical scattering law gives rise to an additional kernel. In plane geometry they can 
again be expressed by higher exponential integrals &(I x - x’ I). No analogy exists 
for spherical geometry due to the lack of rotational symmetry in the anisotropiccase, 
preventing expression of the kernels as a function of the radial distance / r - Y’ /. 
This difficulty can be overcome in the Fourier transform space where both geo- 
metries can again be treated simultaneously as in the isotropic case. 

In the following section the transport integral equation is Fourier transformed 
resulting in a new integral equation with a simpler displacement kernel. The 
essential step of the method is to reduce the new integral equation to a linear 
system of algebraic equations by the aid of a certain bilinear expansion for the 
kernel. This bilinear expansion is a generalization of an addition theorem for 
spherical Bessel functions. Since it seems to be new, the derivation is given in the 
Appendix. Truncation of the bilinear expansion after N terms constitutes the 
IT, approximation to our method. 

In the third section the matrix elements of the linear system of equations are 
investigated in detail. They are analytical functions of the “optical depth” or 
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thickness measured in mean free paths (200 of the physical system. The evaluation 
and the appropriate representation of the matrix elements is of central importance 
for the IT method. For numerical convenience they are represented as asymptotic 
expansions for large 01 (CX 2 10) and as rapidly converging series expansions for 
small 01. 

A computer program has been written to calculate the elements to any spatial 
truncation order N, but it is limited for the time being to linear anisotropy. The 
elements for higher anisotropy can easily be included on the basis of recurrence 
relations. 

The fourth section contains the representation of the solution of the transport 
equation obtained by inversion of the Fourier transform. The solution is given in 
terms of special analytic functions in the angular b) and space (x) variables with 
coefficients satisfying the linear system. In the fifth section the solution is repre- 
sented as a very convenient double series of Legendre polynomials P&) and P,(X) 
which can easily be generated on the computer. 

The last section gives some numerical results illustrating the working of the 
method. 

2. THE IT APPROACH 

The macroscopic distribution of neutrons in the coordinate and momentum 
space is generally described by the directional or angular flux #(r, n). For mono- 
energetic neutrons interacting with the atoms of a homeogeneous uniform medium, 
the directional flux is obtained as the solution of the linearized Boltzmann Eq. [l] 

t&r, ~2) = J’,u ds epszt Is,, ) d3S2’Zs(r’, fX ---f Sz) a/@‘, Sz’) + S’(r’, a)/. (2.1) 
n 

Here r is the vector of the reference point P, r’ = r - SP the vector of the collision 
point P’, S2 denotes the flight direction of a neutron, S(r’, Sz) the external source 
density at P’ in direction S2. The “scattering kernel” Z,(r’, St?’ + Sz) expresses the 
probability that a neutron at the collision point changes its flight direction from 
Sz’ to Q; & is the total macroscopic cross section (including scattering, fission and 
absorption). The restriction to monoenergetic neutrons is only for convenience 
and not essential for the present approach. 

We make the usual assumption that the material is of isotropic structure so that 
the scattering kernel depends only on the cosine of the angle 0 between the direc- 
tions SZ’ and P. The anisotropy of the scattering may be of degree L; that means we 
have L anisotropic Legendre components in the expansion of the scattering kernel 

.C,(r , P’ + SL) = (l/477) f (21f 1) Zs,c(r’) P,(cos 0). (2.2) 
1-O 
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In the following the transport integral equation for systems with spherical and with 
plane symmetry will be derived and solved by the IT technique. Since the transform 
technique in the case of the sphere is not straightforward some essential details 
are presented. 

We look for solutions of Eq. (2.1) which are bounded and absolutely integrable 
functions. This set of functions contains just the solutions of physical meaning. It 
follows from the structure of the integral equation and the nature of its kernel that 
the solutions satisfy a Holder condition with respect to the space variable. This 
is sufficient for the existence and unicity of the Fourier transform and its 
inversion [19]. 

FIG. 1. Radius vector r and r’ of the reference point P and collision point P’ in a system with 
spherical symmetry. P’ and G? are the particle flight directions before and after the collision. 

Spherical Systems (Fig. 1) 

Due to the radial symmetry the angular flux $(I-, a) = #(r, p) is assumed to 
depend only on r = 1 r 1 and the cosine p = cos(Q, r) between the flight direction 
and the radius vector of the reference point. We introduce further the projections 
(Fig. 1) pO = cos(CA, r’) and p’ = cos(Q’, r’). The directed source density at the 
point r’ is then of the form S(r’, &. The further treatment requires the separation 
of the coupled scattering angles Sz and Q’ in terms of the projections p, I*,, and EL’. 
This is achieved on the basis of the addition theorem for the spherical harmonics 
[2] which allows to express P,(cos 0) in terms of associate Legendre functions 
of the variables CL,, and TV’. Integration of P,(cos 0) with respect to the azimuth y’ 
of Sz’ referred to the r’-axis cancels all terms except P&L’) P&J, the latter being 
multiplied by 277. 

#I/10/3-11 
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If we introduce the moments of the angular flux by 

s +’ 4’ P&4 Nr’, $1 = &(r’>, -1 
Eq. (2.1) can be written 

(2.3) 

#(r, CL) = 1,” ds exp(-#&I[ i. (I + l/2) ~,,dr’> J’dpo) Mr’) + S(r’, po)\. (2.4) 

In the case of isotropic scattering (L = 0), Eq. (2.4) may be converted into an 
integral equation of displacement type for the total flux t,$(r). On the basis of a 
(one-dimensional) Fourier transform with respect to r this integral equation is 
reduced to a linear system [lo]. In the anisotropic case (L 2 l), however, this 
direct approach fails. We are faced with the actual three-dimentional character 
of the problem and have to use the transform 

F(B, q) = (27~)-~/~ 1, dr r2 1-1 dp jr dg, exp(--i B * r) #(r, p), (2.5) 

where B is the coordinate vector of the transformed space, B = j B 1, and 
q = cos(S2, B). On the basis of the following 

LEMMA 1. 

s 
2R dg, exp( --i B . r) = 27r f (-i)” (2~2 + 1) j,(Br) P,(q) P,(p), (2.6) 
0 VI=0 

which is proved in the Appendix, the integration with respect to v on the r.h.s. of 
Eq. (2.5) is settled. Thej, are the spherical Bessel functions [3]. With definition (2.3) 
of the angular moments, Eq. (2.5) can be written 

F(B, 7) = (27~)-l/~ i (-i)” (2n + 1) P,(v) 1, dr r2j,(Br) &(r). 
TZ=O 

(2.7) 

Let the integral with respect to r in (2.7) be denoted by fn(B). It represents a 
Hankel transform [9] of order (n + l/2) of the function #Jr). The inversion of this 
transform is given by 

b(r) = $1,” dB BWBr).W). (2.8) 

The right hand side of Eq. (2.4) depends in a rather complicated way on the 
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variables r and p. These are contained in r’ and EL,, according to elementary 
geometrical relations valid in the triangle (Fig. l), spanned by r, I’ and S. When 
applying the operator (2.5) to the r.h.s. of Eq. (2.4) it is essential to recognize that 
the volume element written down in Eq. (2.5) can be substituted by the volume 
element r12 dr’ dp,, drp, . (0 d r’ < co; -1 <pFLo < 1; vO= g,+const; s un- 
changed). Owing to this substitution the integration is considerably facilitated. 
We split the exponential B * r in the operator (2.5) into B * r’ + Bs~. The transform 
of the r.h.s. of Eq. (2.4) consists of a fourfold integral with respect to s, 9)0 , p,, and r’. 
The s-integration can be done immediately yielding (2, + iB?)-l as a prefactor. 
The yO-integration introduces a simplification according to the orthogonality 
property of the Legendre polynomials. It remains a finite sum from 0 to L of 
integrals with respect to r’ containing the angular moments c,b,(r’). The scattering 
cross sections Z:s,l(r’) are constant inside the sphere and vanish identically outside 
(“black absorber assumption”) so that the r’-integration actually runs from r’ = 0 
to the sphere radius a. In order to get an integral equation in the Fourier space 
we express the remaining &(r’) by thef@) according to (2.8) and find 

. (y” jy dB’ WW &(B’, B) + Q(B, 7). (2.9) 

The new source term Q(B, 7) is the transform of the uncollided flux due to the 
source S(r’, po) in the sense of Eq. (2.5). 

In Eq. (2.9) we introduced the “partial kernels” 

&(B’, B) = j: dr ?j,(B’r)j,(Br). (2.10) 

The essential step of the IT method is to replace the partial kernels of the type (2.10) 
by bilinear expressions and to reduce (2.9) to a linear system of algebraic equations. 
This aim is attained by the aid of 

LEMMA 2. 

KdB’, B) = & 2 (2~ + 1) j&B’> j,&B), 
m=z+1(2) 

(2.11) 

the proof of which is given in the Appendix. (The summation subscript is always 
increased by two: m = I + 1, I + 3,...). 
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If the projections of the f,(B) onto the j,(aB) are denoted by X& (up to a constant 
normalization factor) Eq. (2.9) can be rewritten in the form 

W7 + l).inW) X; + Q(B, 4. (2.12) 

The coefficients XL are reproduced on the 1.h.s. of (2.12) first by performing the 
angular moments with respect to P1(v) followed by a projection onto the j,&zB). 
The results of the double integration is the desired linear system for the coefficients 
Xl 

x$ = i (21 + 1) a&, ,=;lt2, (2m + 1) CAd4 xA 4 ~5 (2.13) 
z=o 

(m’ = I’ + 1, I’ + 3,...). The matrix elements turn out to be 

(2.14) 

They are real and depend only on the “optical thickness” 2cu = 2a& of the sphere. 
Due to the obvious symmetry properties T:;,(a) = TLA,(ol) = (- l)m’+m Tz!m(ol), 
only those matrix elements for which 1’ > I and m’ 3 m need to be evaluated. 
The source vectors Q$ are obtained as the projection of Q(B, 7) onto PI,(q) and 
j,,(aB) in the same way as the XL, are obtained from F(B, 7). 

Plane systems (Fig. 2) 

Whereas in the sphere the angular density depends on the angle between flight 
direction ~2 and the instantaneous radius vector, all angles in the plane system 
refer to the same fixed x-direction. The angular density Z/(X, II) in the reference 
point P is to depend only on the distance x from the mid-plane of the slab and on 
/.L = cos(Q, x), th e cosine of the angle between flight direction and the x axis. The 
directed source density in P’ depends on x’ and t.~. The decomposition rule (2.2) 
and the addition theorem for Pl(cos 0) are applied as in the preceding case with 
the only difference that pO has to be replaced by p, since all angles now refer to the 
same axis. Azimuthal integration of P,(cos 0) cancels again all higher harmonics 
except P&L’) P&L). With the abbreviation (2.3) for the angular moments the 
integral equation (2.1) reduces to 
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FIG. 2. Location of reference point P resp. collision point P’ at the distance x resp. x’ from 
the symmetry plane x = 0 in the slab case. 

The appropriate integral transform is the one-dimensional Fourier transform 

F(B, p) = (277)-1/Z Itrn dx exp(-iI3x) $(x, p). 
-02 

(2.16) 

Operation (2.16) applied to the r.h.s. of Eq. (2.15) leads to a double-integral over 
an (x, s)-domain. It is much more convenient to perform the integration in the 
(x’, s)-domain defined by the substitution x’ = x - sp which is geometrically 
evident from the triangle POP’ in Fig. 2. The area element (dx ds) changes into 
(dx’ ds), again -cc < x’ < co. The effective range of the variable x’, however, 
is --a < x’ < +a since Z&x’) and the source density vanish in the vacuum out- 
side the slab of half-thickness a. Moreover we take ZS,I to be constant inside the 
slab of uniform material. The s integration is now immediate, yielding a prefactor 
(Zt + i&-l. Proceeding as before in the case of the sphere, we arrive at an 
integral equation for the Fourier transform F(B, p) of the angular flux with the 
kernel K(B’, b) = (B’ - B)-l sin(aB’ - aB). On the basis of a well-known 
bilinear expansion for this kernel in terms of spherical Bessel functions [6, 171 
the solution of the integral equation can be given in the form 

* z. C-i)” (2~ + l)uLn(~~> Kk + QP, 1-4 (2.17) 

with coefficients satisfying the linear system 

XL, = i (2lf 1) uZ,,, g (2m + 1) T$&) A’; + Q;, . (2.18) 
I=0 VL=O 
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The source vector QL, is defined in the same way as for the sphere. Also the matrix 
elements T,!$m are the same functions of LY. as before [Eq. (2.14)]. Whereas in the 
case of the sphere the sums (m + Z) as well as (m’ $ I’) have to be odd numbers due 
to the structure of the partial kernels (2.1 l), the selection rule for the matrix 
elements of the slab is based upon the parity property of the integrand 
in (2.14). Since j&p) = (-)mj,(fl) and P,(-p) = (-)” P,(p) it follows that 
(m’ + I’ + m + Z) has to be even. Otherwise, TL,l,(ol) E 0 if (m’ + I’ + m + 1) 
is odd. 

As a consequence the solutions of system (2.18) split up in two different symmetry 
classes, a first class with both (m’ -+ I’) and (m + 1) even and a second class with 
both odd. According to as the source vector Q$ has even or odd parity (m’ + 1’ = 
even or odd!), the first or second class of solutions is selected out. 

3. MATRIX ELEMENTS 

The matrix elements of the linear system (2.13) and (2.18) and their determination 
in a form suitable for numerical purposes are of central importance in the present 
approach. Although the matrix elements are expressible in closed form, we shall, 
in view of numerical requirements, confine ourselves to present them as expansions 
with respect to the parameter 01. Since the power series expansions converge slowly 
for (II > 1 we also give asymptotic expansions in I/LX, valid for large 01. 

By means of elementary transformations it is possible to bring the expression 
(2.14) for the matrix elements into the form 

Th?,d4 = (4 Q,,&> jl-$- P&) f’Ai4 exp(--2dp), (3.1) 

where the Q,,,(q), defined as the Fourier transform of the product of spherical 
Bessel functions contained in expression (2.14), are special polynomials in q which 
had been investigated in detail in a previous paper [7]. 

Asymptotic expansions 

If we perform in Eq. (3.1) first in the integration with respect to q, we obtain 
a finite expression in powers of (~/CL) and a further contribution of the order of 
exp(--2ol). A second integration with respect to p yields the representation of the 
matrix elements for large 01 

m’+m+1 
T$&(a) = c (2cX-"-l& A,“‘“L,?’ + O(e-““l/a), (3.2) 

V=O 
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where AT’” is the coefficient of qv in the polynomial Qmtm(q). For m > m’ we found 
[7] A:‘m = (m + 1/2)-l S,,* ; AT’” = -2 and in the case 2 < v < m’ + m + 1, 

2(-l)” u-1 

A" 
m'm = v! (v _ 1) ! El (m + m’ + 1 + v - 2p)(m - m’ + V - 2P). (3+3) 

For m < m’ all coefficients are multiplied by (-)m’+n, in agreement with the 
symmetry properties of Eq. (2.14). The effect of anisotropy is reflected by the 
cofactors 

L? = (v + 1) j; dpp"~dp) Pm. (3.4) 

For 1 = I’ = 0 they have the value unity, so that in this case the matrix elements 
(3.2) reduce to the T,s,(ol) derived for isotropic scattering in Refs. [7, lo]. For 
01 2 a* = 10, the error caused by neglecting the exponential contribution in 
(3.2) is at most of the order lo- lo For 01 -=c a* the following series expansion is . 
recommended. 

Series Expansions 

If the product of the Legendre polynomials is expanded into powers of TV the 
p-integral in (3.1) can be expressed in terms of the standard exponential integral 
E,+1(201q), the expansion of which near 01 = 0 consists of a power series in 01 and 
a logarithmic term. It is given in Ref. [8]. 

Using this expansion in (3.1) and performing the integration with respect to 
q we obtain the result 

where j* = I’ + I+ 1 if m’ + m < 1’ + I and j* = 0 if m’ + m > 1’ + 1. The 
anisotropy coefficients in Eq. (3.5) are defined by 

(3.6) 

They are the counterparts to (3.4) for negative powers of p. Again they reduce to 
unity for the isotropic case I’ = I = 0. 
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The constants ~7’” are [7] 

(-)” (m’ + m = even), 

&” zzz 
IV7&-W&l-l 

(3.7) 
m'+mt1 

fi (j + 2 -  24 ~ fi ‘j, + 3 - 21) 
kxl (j + 2 + 2k) 1=1 (J + 1 + 21) (m’ + m = Odd)’ 

It turns out that in the case (m’ + m) > (I’ + I) all contributions @‘j,(a) due 
to the logarithmic singularity in the expansion of the exponential integral vanish 
identically. This is always true in the case of spherical symmetry described by 
Eq. (2.13). Hence the matrix elements for the sphere are all regular analytic 
functions of the optical thickness 201. 

In the case of the slab, Eq. (2.18), also matrix elements with (m’ + m) < (l’ + I) 
are needed. These elements have a logarithmic singularity near cy = 0. The 
logarithmic terms and the first terms of the expansion in a up to &tz are evaluated 
separately and denoted by @&(u). These terms satisfy the same symmetry 
properties as the matrix elements themselves. 

For linear anisotropy (0 < I’, 1 < 1) five different functions Dj$m(a) have to 
be calculated. They are 

D::(a) = (3/2) - y - log(2ol), (3.8a) 

m4 = (l/3) - (d3)((19/12) - y - bd24, (3.8b) 

%(d = (l/2) - (2a/3) + (01~/3)((25/12) - y - log(2cu)), (3.8~) 

D;:(cx) = (2cQ5) - (aZ/9)((7/4) - y - log(2cu)), (3.8d) 

D;&x) = -(a/15) + (m2/15)((97/60) - y - log(2cu)). (3.8e) 

where y = 0,577215 **. is the Euler-Mascheroni constant. 

The Computer Program for the Matrix Elements 

For the numerical calculations a computer program for the evaluation of the 
matrix elements has been developed. This program admits any desired spatial 
trunction order N (defined as the upper limit for summation with respect to m in 
the system (2.18)) but is restricted for the time being to linear anisotropy (L = 1). 
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Extension to a higher degree of anisotropy is straightforward on the basis of the 
following recurrence relations: 

(2lf l)[(k + 2) c:22.z(4 + (k + 1) c&41 

= (2k + 3)[(1 + 1) r;;lS”+l(CX) + zT$lSz-l(ol)], (3.9) 

(2m + 3)(2n + l)W + 1) ~k%k-4 + C?i~l,(41 

= @I + 1)(2k + 1) 4cY+2,&) - cz&41 + ~m-nM%nn + L+2,n) (3.10) 

&*?l = 1 or 0 according to as m = IZ or not). All these relations are valid as long 
as all indices are nonnegative. Equations (3.9) and (3.10) hold also for I= 0 and 
1’ = 0, respectively. In that case they degenerate into a three-term formula for 
elements at the border of the matrix. Furthermore, due to symmetry properties 
of (2.14), we find that only the following matrix elements have to be calculated 
directly: cmV,(ol); TEJol); T,$IY). All other elements can be derived recursively. 

The evaluation of the matrix elements for values of 1 CII I < 10 is based on the 
series expansion (3.5) together with Eqs. (3.8a)-(3.8e). For larger a-values the 
asymptotic approximation, Eq. (3.2) has been used. Numerical experiments on 
an IBM 360/65 computer using double precision arithmetic have shown that in 
the range 10 < a: < 15 the results of both Eqs. (3.2) and (3.5) coincide within 
six significant digits. 

The form of the coefficients x7’“, Eqs. (3.7), is very convenient for numerical 
computations since each coefficient can be calculated from one with a lower 
index by multiplication with a certain number. 

4. SOLUTIONS IN THE PHYSICAL SPACE 

1. Slab 

Once that I;(& p), Eq. (2.17), is known in terms of the solutions of the linear 
system the angular flux distribution #(x, p) is obtained by Fourier inversion. 
Introducing the uncollided angular flux #S(x, p) due to the particles originating 
directly from the source, which is equal to the Fourier inverse of Q(B, p), and the 
distributions functions 

G, ($, c) = (-j)” ?? Jfm 
rr 

dB(& + iBp)-l exp(iBx) j,(aB), (4.1) -m 

we can write 
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For appropriate source distributions the uncollided flux can be calculated ana- 
lytically. 

The G, are real and obey the following reciprocity relation 

(4.3) 

They individually satisfy the exact slab boundary conditions (i.e., no incoming 
angular flux at the boundaries): 

G, (I,$) = 0 for x = a, jd < 0, (4.4a) 

G, (-I,& 
1 

= 0 a for x = -a, p > 0. (4.4b) 

Statements (4.4) are based on the fact that for x = a the integrand in (4.1) is 
regular in the upper half plane. For p < 0 the only singularity originating of the 
denominator lies in the lower half plane. The path of integration can be closed in 
the upper half plane, hence the integral is zero. The validity of (4.4b) is a conse- 
quence of (4.4a) and the reciprocity relation (4.3). 

The functions (4.1) can be evaluated analytically. We find under the condition 
p >o: 

G, (;, $j = (7)” 

where 

2. Sphere 

The Fourier inversion of Eq. (2.5) leads to the following representation for 
the angular flux 

$(r, CL) = 2 (k + Q) PkW $k@), 
k=O 

where 

i/+(r) = ,J$ ik J” 
0 

dB B2j,(Br) 1:: 6 pk(d WY rl) 

and F(B, v) is given by Eq. (2.12). 

(4.6) 

(4.7) 
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In contrast to the situation for the slab the expression (4.7) for the sphere is 
hardly amenable to analytical evaluation. Owing to the theorems of the following 
section we are not forced to evaluate the distributions (4.7) if we only want to 
know the distribution of the angle-integrated flux, which is of primary interest 
in reactor physics. 

5. THE P,-SP, APPROXIMATION 

Whereas the analytical representations (4.2) or (4.6) are more of principal 
interest, the approximations stated by the following theorems are of practical 
importance and of surprising computational simplicity. 

THEOREM I. The angularjlux distribution #(x, p) inside the slab can be approxi- 
mated (in the mean!) by the double Legendre polynomial expansion with respect 
to the angle and the space variable (PK - SP, approximation) 

The Xt is just the solution vector of the linear system (2.18). 

Proof. Using the orthogonality properties of the Legendre polynomials, the 
expansion coefficients in (5.1) satisfy (5 = x/a) 

If we substitute for #(x, p) the expression (4.2), we obtain on the r.h.s. two 
contributions. Due to the interconnection between Legendre polynomials and 
spherical Bessel functions [3] which plays here a fundamental role, the second 
contribution reproduces the term T:!,(a). In a similar way the contribution 
of the uncollided flux $S(x, p) results in the source vector Qz, introduced earlier. 
Hence the coefficients Xi, of the expansion (5.1) indeed satisfy the linear system 
(2.18) 

Of great importance for practical problems is the knowledge of the “angle- 
integrated flux,” defined by &,(r) in the sense of Eq. (2.3). For the slab, it is given 
by 

(5.3) 

In the case of the sphere a P&P, expansion for the angular flux similar 
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to (5.1) could not be found. For the angle-integrated flux &,(r), however, an 
analog to the result (5.3) can be established by the following 

THEOREM II. The flux distribution &,(r) in the sphere can be approximated (in 
the mean) in the P&P, approximation by 

(5.4) 

where Xz satisfies the linear system (2.13) with I’ = 0. 

The proof of Theorem II is step by step completely the same as for Theorem I. 
Since the Legendre polynomials P&) and P,(x/a) are easily generated on a 
computer up to arbitrary high degrees K and N the complete solution of the 
transport integral equation is given by Eqs. (5.1) and (5.3) in the plane case and 
by Eq. (5.4) in the case of the sphere, provided the coefficients Xk have been 
obtained solving the linear systems (2.18) and (2.13). 

6. NUMERICAL RESULTS 

For illustration we give here some numerical examples. We consider neutron 
transport in a bare homogeneous sphere. Since the main purpose of the paper is 
to show the essentials and the usefulness of our method rather than the solution 
of a physical problem, we restrict our considerations to monoenergetic neutrons 
and linear anisotropic scattering. 

The scattering kernel in this case reads 

Z,(Q’ - n) = J& (1 + 3p cos O), (6.1) 

where ,% = Z,,,/Z,,, is the average cosine of the scattering angle. Since by physical 
reasons the scattering probability (6.1) must not be negative, we have the restriction 
I p I < l/3. 

As an example we have determined for a sphere the eigenvalue c = ZJ& (the 
mean number of secondaries per collision necessary to maintain criticality) as a 
function of p and 01. The value c was obtained iteratively from Rayleigh quotients, 
except for 01 = 100, where the characteristic polynomial has been constructed 
and solved numerically. For large 01, all eigenvalues tend to unity and may thus 
not be well separated by the iterative method. 

In Table I we present the result of our computations. These six digit values 
were all obtained for N = 3 only. They are final and do not change if N = 6 is 
taken. The computing time on the IBM 360165 is about a second in any case. 
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The value of c depends weakly, and almost linearly, on the anisotropy parameter p. 
Clearly, for backward scattering (p < 0), c is smaller than for forward scattering 
(cc > 0). 

The agreement with S, or S,, reference calculations performed with the code 
DTF-IV [12] using 50 space points is satisfactory for small anisotropy values ,IZ. 
For 1 ,LL 1 = l/3 the difference between the two methods is remarkable. As compared 
to IT, the DTF-IV version of the S, approximation overestimates the dependence 
of c on fi. From asymptotic theory [II] it is easily deduced that the quantity 
(1 - l/c) is proportional to (1 - p)-l. More precisely, 

(1 - l/c)&+1,3/(1 - l/c),=-,,, = 2 + O(a-2). (6.2) 

For 01 = 10 this ratio amounts to 1.8 for IT, but to 4.8 for S,, . Hence there 
is a strong indication that the IT, results are the more accurate ones. We note the 
full agreement with the results of Kiesewetter et al. [15] which, however, are 
confined to isotropy only. 

It should be emphasized that due to the regular analytical behavior of the 
matrix elements for the sphere near (Y = 0 the system (2.13) has still solutions in 
the case of negative values of 01. They are meaningful in time dependent problems. 

If we look for the asymptotic behavior of a source-free pulsed neutron distri- 
bution decaying exponentially in time with a rate X, it has been shown [lo] that 
the amplitude satisfies an integral equation identical to Eq. (2.1) without source 
term, except that the total cross section Zt has to be replaced by (& - h/v), v being 
the speed of the monoenergetic neutrons. We are faced with an implicit eigenvalue 
problem for the decay rate h. We note that 01 is then no longer the “optical half 
thickness” aL”, of the sphere but has the form 

cy. = aZ,[l - (h/uZC,)]. (6.3) 

For sufficiently small spheres the decay constant may be so large that 01 defined 
by Eq. (6.3) becomes negative. In Table II the fundamental decay constant (~/UC,) 
is calculated as a function of 01 for different parameters ,L In order to obtain the 
radius (a&) of the sphere (measured in mean free paths) we have to divide the 
01 values in the first column of Table II by the corresponding factor (1 - h/u&). 
Thus, for instance, the decay constant is 1.0936 for a sphere of radius 
(-0.1) : (1 - 1.0936) = 1.068 mean free paths. 

The decay rate is strongly influenced by the preferential direction (,G) of the scat- 
tering. As can be deduced from Table II preferential backward scattering (,Z < 0) 
tends to diminish the decay rate whereas forward biased scattering tends to increase 
it. In the limit of thick spheres (a> 1) we find h(i; = 1/3)/&G = -l/3) = 2. 
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TABLE II 

Fundamental decay constant (h/u&) for a uniform sphere as a function of the parameter LY, 
Eq. (6.3), for different average cosines p of the scattering angle in the case of linear anisotropic 

scattering 

-l/3 -0,2 -0,l +0 +o, 1 +o, 2 +1/3 

-1.0 2.7288 2.6082 2.5151 2.4192 2.3202 2.2172 2.0727 

-0.1 1.0936 1.0894 1.0860 1.0825 1.0787 1.0746 1.0686 

+0.1 0.9165 0.9199 0.9262 0.9255 0.9286 0.9320 0.9370 

+1.0 0.4580 0.4724 0.4842 0.4971 0.5112 0.5269 0.5510 

+10.0 

+100.0 

Asymptot. 
Ref. [ll] 

0.02137 0.02342 0.02524 0.02738 0.02992 0.03298 0.03824 

0.000244 0.000271 0.000295 0.000324 0.000360 0.000404 O.ooo483 
0.000244 0.000270 0.000295 0.000324 0.000360 0.000405 0.000468 

This result is in full agreement with asymptotic transport theory where the decay 
rate for large systems is given by [l l] 

h - (vB2/32q(l - /q-l. (6.4) 

Here the “buckling” B2 is connected with the radius by B = ~(a + 8)-l. The 
“extrapolation distance” 6 used to calculate the asymptotic values of Tables I 
and II is that of the half-infinite space, namely, 6 = 0.710 m.f.p. Although the 
IT, approximation has its merits (high accuracy for low order N) mainly for the 
solution of transport problems in small systems, it shows also the correct asymp- 
totic behavior for large systems. 

CONCLUDING REMARKS 

The main restriction to the present IT-approach is imposed by the geometry. 
Apart from plane and spherical systems that can be treated simultaneously, it is 
also possible to solve analytically transport problems in cylinders or layered 
slabs. For more general geometrical configurations, the explicit determination 
of the matrix elements may become a very difficult task or even be impossible to 
do analytically. In this case an essential advantage of the IT approach will be lost. 
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Energy exchange due to the interaction of the particles with matter can be 
taken into account in a straightforward way. Then the matrix elements of the 
linear systems have two more indices, characterizing the transition between any 
two energy groups. 

APPENDIX 

A. Proof of Lemma 1 

Denoting the cosine between B and r by 7, we use the following addition 
theorem: 

exp(--iB * r) = 2 (-i)” (2n + l)j,(Br) P,(T) 
n-0 

(Al) 

(“decomposition of a plane wave into spherical waves” [3, p. 4401). The j,(x) 
are the spherical Bessel functions [3]. We relate the vectors B and r to the fixed 
axis Sz with cos(B, Q) = 77, cos(r, Q) = p and denote the azimuthal angle between 
the planes (B, sL> and (r, S2) by v. Applying the addition theorem for spherical 
harmonics [2] to P,(T) and performing the azimuthal integration over v from 0 
to 2n all terms except P,(v) P,(p) cancel out, the latter being multiplied by 27~. 
Hence Lemma 1, Eq. (2.6), is immediate. 

B. Proof of Lemma 2 

According to a result [3, p. 4841 for the integration of a product of Bessel 
functions, the integral (2.10) defining the partial kernel K,(B’, B) can be written as 

where /3 = aB and p’ = aB’. We suppose /3 # /3’. 
Using twice the recurrence relation [3, p. 4391 for spherical Bessel functions in 

the bracket of (Bl) we obtain a new recurrance relation for the KL themselves: 

fG = a3(B’&1 (21+ 3) X+1@‘) .h+dB) + KL+, . GW 

We may write down Eq. (B2) for I replaced by (I + 2), (1 + 4),..., (I + 2N + 2) 
and add. We obtain 

Kz - a3(p/3)>-l 5 (21 -k 4fi i- 3)j,,+,+,($)j,,,,+~(~) = &N+L+Z . 
t&=0 

(B3) 
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The remainder term on the r.h.s. can be estimated in the following way: From the 
integral representation of Bessel functions [3, p. 4381 and an estimation for the 
Legendre polynomials [3, p. 7861, we have for all real x and IZ 

(B4) 

Hence &+zn+z vanishes like N-l for N--+ cc. Performing the limit N -+ cc, we 
obtain directly the relation which constitutes Lemma 2. The case @ = p’ is already 
known [3, p. 4841 and again confirms Lemma 2. 
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